线程池优点

  • 降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
  • 提高响应速度。当任务到达时,任务可以不需要等到线程池创建就能立即执行。
  • 提高线程的可管理性。线程是稀缺资源,如果无限制地创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一分配、调优和监控。但是,要做到合理利用线程池,必须对其实现原理了如指掌。

线程池创建

public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
RejectedExecutionHandler handler)

corePoolSize:线程池核心线程数量

maximumPoolSize:线程池最大线程数量

keepAliverTime:当活跃线程数大于核心线程数时,空闲的多余线程最大存活时间

unit:存活时间的单位 (DAYS,HOURS,MINUTES,MILLISECONDS……)

workQueue:存放任务的队列

handler:超出线程范围和队列容量的任务的处理程序

线程池实现原理

提交一个任务到线程池中,线程池的处理流程如下:

1、判断线程池里的核心线程是否都在执行任务,如果不是(核心线程空闲或者还有核心线程没有被创建)则创建一个新的工作线程来执行任务。如果核心线程都在执行任务,则进入下个流程。

2、线程池判断工作队列是否已满,如果工作队列没有满,则将新提交的任务存储在这个工作队列里。如果工作队列满了,则进入下个流程。

3、判断线程池里的线程是否都处于工作状态,如果没有,则创建一个新的工作线程来执行任务。如果已经满了,则交给饱和策略来处理这个任务。

I5F6C4.md.jpg

线程池源码解读

ThreadPoolExecutor的execute()方法

public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();       //如果线程数大于等于基本线程数或者线程创建失败,将任务加入队列
if (poolSize >= corePoolSize || !addIfUnderCorePoolSize(command)) {          //线程池处于运行状态并且加入队列成功
if (runState == RUNNING && workQueue.offer(command)) {
if (runState != RUNNING || poolSize == 0)
ensureQueuedTaskHandled(command);
}         //线程池不处于运行状态或者加入队列失败,则创建线程(创建的是非核心线程)
else if (!addIfUnderMaximumPoolSize(command))           //创建线程失败,则采取阻塞处理的方式
reject(command); // is shutdown or saturated
}
}

创建线程的方法:addIfUnderCorePoolSize(command)

private boolean addIfUnderCorePoolSize(Runnable firstTask) {
Thread t = null;
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
if (poolSize < corePoolSize && runState == RUNNING)
t = addThread(firstTask);
} finally {
mainLock.unlock();
}
if (t == null)
return false;
t.start();
return true;
}

Worker类的run方法

public void run() {
try {
Runnable task = firstTask;
firstTask = null;
while (task != null || (task = getTask()) != null) {
runTask(task);
task = null;
}
} finally {
workerDone(this);
}
}

worker在执行完任务后,还会通过getTask方法循环获取工作队里里的任务来执行。

线程池例子

public class ThreadPoolTest implements Runnable{

@Override
public void run() {
try
{
Thread.sleep(100);
}
catch (InterruptedException e)
{
e.printStackTrace();
}
}

public static void main(String[] args) {
LinkedBlockingQueue<Runnable> queue =
new LinkedBlockingQueue<Runnable>(5);
ThreadPoolExecutor threadPool = new ThreadPoolExecutor(5, 10, 1, TimeUnit.SECONDS, queue);
for (int i = 0; i < 16 ; i++)
{
threadPool.execute(
new Thread(new ThreadPoolTest(), "Thread".concat(i + "")));
System.out.println("线程池中活跃的线程数: " + threadPool.getPoolSize());

if (queue.size() > 0)
{
System.out.println("----------------队列中阻塞的线程数" + queue.size());
}
}
threadPool.shutdown();
}
}
  • 运行结果

I5Vui8.png

  • 解释

从结果可以观察出:

1、创建的线程池具体配置为:核心线程数量为5个;全部线程数量为10个;工作队列的长度为5。

2、我们通过queue.size()的方法来获取工作队列中的任务数。

3、运行原理:

刚开始都是在创建新的线程,达到核心线程数量5个后,新的任务进来后不再创建新的线程,而是将任务加入工作队列,任务队列到达上线5个后,新的任务又会创建新的普通线程,直到达到线程池最大的线程数量10个,后面的任务则根据配置的饱和策略来处理。我们这里没有具体配置,使用的是默认的配置AbortPolicy:直接抛出异常。

  当然,为了达到我需要的效果,上述线程处理的任务都是利用休眠导致线程没有释放!!!